扫码添加微信,获取更多半导体相关资料
在这篇文章中,演示了在钛薄膜上形成纳米尺度阳极氧化物的设备,以及在接触或半接触模式下使用NTMDT公司的求解器PROTM AFM对其进行表征。众所周知,在电场的影响下,当不同材料的表面相对于带负电的电极带正电时,氧化膜在表面上生长,这种电化学反应被称为阳极氧化,在图1中,显示了老挝的原理方案,在空气或任何潮湿的大气中,探针和样品表面通常被一层吸水薄膜覆盖。当尖端足够接近表面时,这些被吸收的层接触并通过毛细作用形成电解质桥。在尖端施加负电压时,尖端下方的钛表面将发生电化学反应。
图1
表面和尖端之间产生的电场刺激通过阳极氧化物的转移,阳极氧化岛高度的生长速度主要取决于离子的速度和电场强度,在阳极电位不变的情况下,氧化物中的场强将随着阳极氧化物的生长而下降,因此,电场与生长中的氧化物岛的厚度成反比。氧化丘的生长速度在阳极氧化的早期阶段较高,因为当它穿透超薄电介质膜时,大电场没有时间减少。可以看出,电流密度随着阳极膜的生长呈指数下降,因此,生长速度下降,最后,氧化物岛生长停止在由阳极电势定义的某个值,图2展示了改性钛表面的典型原子力显微镜图像。
图2
为了减小尖端和表面之间的水桥直径,我们建议根据W和Ti的耐火化合物选择特殊的硬涂层,为了达到所需的特性,开发了用于老挝的硅悬臂梁的TiOx和W2C涂层,使用了阴极电弧沉积技术,这种方法允许沉积表面粗糙度约为0.1nm的超薄连续非晶薄膜,低粗糙度是非常重要的,因为在氧化过程中表面形貌在几纳米内发生变化,其他低粗糙度薄膜沉积技术,如分子束外延也可以使用。
为了获得老挝表面的尖端,我们使用了我们的标准,能够执行定位软件及其光刻选项。光刻窗口的一般视图如图所示3,使用我们的光刻软件,可以使用网格板,用电脑鼠标点击选择不同的几何图形,并绘制点、线、正方形、矩形、圆形和弧形,偏置电压及其脉冲持续时间也可以在很宽的范围内变化,高达4096x4096点的高级分辨率模式允许用户在大面积上书写复杂的图案,也可以加载位图文件或商用文件。
图3
图4显示了使用NANOLITHTM软件的光栅模式老挝的典型示例,在加载位图掩模之后,在扫描期间,在最小和最大掩模色调之间成比例地施加电压,并且阳极氧化物生长到不同的高度,以给出几纳米尺度的浮雕。
传统的压电管扫描仪具有较大的残余非线性和蠕变效应,这些干扰极大地影响了光刻操作的性能,在求解器PRO™AFM中,我们解决了这一关键问题,为了提高扫描性能,扩大仪器功能,增加了使用等效扫描仪技术的闭环控制,闭环等效器(CLE)扫描仪是工作扫描仪的外部双胞胎,它有电容传感器,可以记录扫描仪在X、Y和Z尺寸上的实际运动。工作和等效扫描仪平行连接到辅助控制单元,然后再连接到SPM控制器,以提供运动同步和闭环控制的扫描。实验表明,在闭环操作下,AFM显著提高了表面图案化的性能。