扫码添加微信,获取更多半导体相关资料
摘要
本研究对不同硅氧化物(热氧化物、TEOS沉积、TEOS退火和PSG退火)、辛尼必物(LPCVD和PECVD)和金属层(Al-Cu、Ti和氮化钛)在HF:h2o24.5:75.5、BHF:甘油2:1和蒸汽高频中的蚀刻进行了比较。蒸汽高频蚀刻是在一个市上可用的晶圆清洗系统中完成的,该系统根据定制规范进行调整,使无粘表面微加工。确定了蚀刻速率作为蚀刻方法、时间和温度(对于高频蒸汽)的函数。此外,在选择用于比较不同薄膜蚀刻行为的标准高频蒸汽蚀刻技术之前,还分析了内部(温度、氮气流、晶片尺寸)和外部(样品预处理)参数对高频蒸汽蚀刻工艺的影响。利用螺旋钻深度剖面和红外光谱法解释了金属膜的时变蚀刻速率和高频蒸汽蚀刻后硅-氮化物膜的变化。
介绍
表面微加工微机电系统(MEMS)通常采用聚硅或聚sige1、2作为结构层,氧化物层作为牺牲层。然后,可以通过使用氟化氢(HF)对结构层具有高选择性地蚀刻牺牲层。最广泛的高频蚀刻方法是在心衰和水的混合物或缓冲液高频与甘油3-10的混合物中进行湿式化学蚀刻。后者首选铝结构在晶片上时,因为在BHF中添加甘油降低金属的蚀刻率。然而,干燥释放的湿式蚀刻结构会导致粘结的问题。虽然存在解决方案来克服这些问题,但也可以通过使用高压蒸汽释放蚀刻剂来规避附着力。特别是当释放过程中的晶片温度升高到40°C以上时,对于表面微加工结构11可以获得较高的收率。
实验
本文研究的覆盖层是四种不同的硅氧化物、两种不同的硅氮化物和三种金属基薄膜。对于湿化学蚀刻实验,使用了两种不同的溶液。第一种溶液由一份氟化氢(49 %)和一份去离子水组成,得到24.5%氟化氢水溶液或14.2摩尔/升。第二种溶液是通过混合两部分缓冲液HF (BHF)和一部分甘油(HOCH2-HOCH-CH2OH)制成的。
为了获得可重复的蚀刻结果,样品的制备是很重要的。样品首先在水中清洗,然后用氮枪干燥,然后在120°C的炉子中烘烤30分钟。这将得到一个干净的样品,然后在系统中预热10分钟,然后以1l/分钟的氮气流开始蚀刻。层厚的测量方法与湿式蚀刻样品的测量方法相同。
湿化学蚀刻
在所有被研究的氧化物中,退火的PSG在HF/H2O中蚀刻得最快。在PSG中加入磷,在蚀刻过程中转化为磷酸,增加了蚀刻速率TEOS的蚀刻速度几乎和PSG一样快。TEOS退火使薄膜致密化,并使其更耐蚀刻。热氧化物,温度最高的氧化物,蚀刻最慢。在BHF/甘油中,氧化物的蚀刻速度比在HF/H2O中慢得多。如前所述,这是由于较低的氟化氢浓度。此外,TEOS蚀刻现在比退火PSG慢。这可能是由于BHF/甘油中的水含量较低,因为P2O5与磷酸的反应需要水。
钛和铝铜都可以在氢氟酸/过氧化氢溶液中快速蚀刻。对于在氮气氛中通过钛的反应溅射制成的氮化钛,蚀刻速率显著降低。薄膜在某一时间的薄层电阻和厚度,以及R 0,sheet和d0,初始薄层电阻和厚度)随蚀刻时间的变化不是线性的。为了更好地理解蚀刻机理,对沉积膜和蚀刻膜进行了俄歇深度分析。对于钛,从图8a和8b可以清楚地看出,在蚀刻过程中,顶部钛层转化为钛氧化物层。TiN样品也是如此。这种向氧化物层的转化导致电阻率的增加,因此也导致薄层电阻的增加。因此,对钛和氮化钛测量的薄层电阻的变化并不直接反映薄膜厚度的变化,而仅仅是电阻率的变化。
两种溶液中不同材料的蚀刻速率列于表1。这些蚀刻速率是从所有数据点的线性最小二乘拟合中获得的,具有非线性特征的金属基薄膜除外。在假定电阻率恒定的情况下,铝-铜、钛和锡的蚀刻速率由整个蚀刻期间薄层电阻随蚀刻时间的平均变化来确定。因此,它们只能作为一种估计。
表1的主要结论是:
与HF/H2O相比,所有蚀刻速率在BHF/甘油中显著较低。
BHF/甘油溶液对氮化物和金属基薄膜具有高得多的选择性,因此当后者材料在牺牲氧化物蚀刻期间在晶片上时,更适合作为蚀刻溶液。
在HF/H2O溶液中,不同类型氧化物之间的蚀刻速率差异较大。因此,当氧化物需要朝向彼此选择性蚀刻时,这种解决方案是优选的。
图8:在HF/H2O中蚀刻7秒后的Ti(a)前和(b)的螺旋钻深度曲线
表1:HF/H2O和BHF/甘油溶液中的蚀率
HF蒸汽
图11显示了随着氮气流量的增加,蚀刻速率的增加。在低流速下,反应气体的供应量太低,蚀刻速率非常低。可能没有足够的水来催化反应17.在中等流速下,随着流速的增加,蚀刻速率增加。然而,对于非常大的流速,这种增加停止,因为在那时,试剂的供应可能不再限制蚀刻速率。
图12显示了晶圆尺寸对蚀刻速率的影响。很明显,晶片尺寸越大,蚀刻越慢。这可能是由于龙胆的供应有限。如果有可能增加更多的氮气流量,则不同晶片尺寸的蚀刻速率差异可能会消失。
在35℃下,氧化硅和金属基薄膜在氟化氢蒸气中的腐蚀速率列于表2。对金属基薄膜的高选择性是清楚的。此外,除了PSG的蚀刻之外,无静摩擦蚀刻的可能性使得HF蒸汽成为非常有吸引力的牺牲蚀刻技术。然而,氮化物的反应可以被认为是一个缺点。此外,除了PSG之外,氧化物蚀刻速率低于BHF/甘油溶液,所有氧化物的蚀刻速率肯定低于HF/H2O溶液。
图11:在加热器级温度为50°C,预热时间为10min时,2cmx2cm退火的TEOS样品的氮气流对蚀刻速率的影响。蚀刻时间为20min
讨论和结论
作为结论,针对三种不同的牺牲蚀刻技术,制作了不同材料的相对蚀刻速率相对于热氧化物蚀刻速率的表格。当比较不同氧化物之间的选择性以及热氧化物蚀刻对铝-铜和钛的选择性时,蒸汽HF显然给出了最佳结果。只有当氮化物或PSG存在于表面时,HF蒸汽才可能不是一个很好的选择。此外,当需要快速氧化物蚀刻并且不需要对其他材料的选择性时,在HF/H2O溶液中的湿法蚀刻可能是优选的。然而,在后一种情况下,需要解决静摩擦问题。
文章全部详情,请加华林科纳V了解:壹叁叁伍捌零陆肆叁叁叁